Mixed-Integer Linear Representability, Disjunctions, and Chvátal Functions—Modeling Implications
نویسندگان
چکیده
منابع مشابه
Mixed-Integer Linear Representability, Disjunctions, and Variable Elimination
Jeroslow and Lowe gave an exact geometric characterization of subsets of R that are projections of mixed-integer linear sets, a.k.a MILP-representable sets. We give an alternate algebraic characterization by showing that a set is MILP-representable if and only if the set can be described as the intersection of finitely many affine Chvátal inequalities. These inequalities are a modification of a...
متن کاملMixed-Integer Convex Representability
We consider the question of which nonconvex sets can be represented exactly as the feasible sets of mixed-integer convex optimization problems. We state the first complete characterization for the case when the number of possible integer assignments is finite. We develop a characterization for the more general case of unbounded integer variables together with a simple necessary condition for re...
متن کاملProjected Chvátal-Gomory cuts for mixed integer linear programs
Recent experiments by Fischetti and Lodi show that the first Chvátal closure of a pure integer linear program (ILP) often gives a surprisingly tight approximation of the integer hull. They optimize over the first Chvátal closure by modeling the Chvátal–Gomory (CG) separation problem as a mixed integer linear program (MILP) which is then solved by a generalGérard Cornuéjols was supported in part...
متن کاملChvátal Closures for mixed Integer Programming Problems
Chvfital introduced the idea of viewing cutting planes as a system for proving that every integral solution of a given set of linear inequalities satisfies another given linear inequality. This viewpoint has proven to be very useful in many studies of combinatorial and integer programming problems. The basic ingredient in these cutting-plane proofs is that for a polyhedron P and integral vector...
متن کاملRegularity in mixed-integer convex representability
Characterizations of the sets with mixed integer programming (MIP) formulations using only rational linear inequalities (rational MILP representable) and those with formulations that use arbitrary closed convex constraints (MICP representable) were given by Jeroslow and Lowe (1984), and Lubin, Zadik and Vielma (2017). The latter also showed that even MICP representable subsets of the natural nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2019
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.2018.0967